12.2. MOBO#

# run only once during the notebook execution
!git clone https://github.com/cfteach/modules.git &> /dev/null
!pip install ax-platform &> /dev/null
!pip install ipyvolume &> /dev/null
!pip install plotly
Requirement already satisfied: plotly in /home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages (5.22.0)
Requirement already satisfied: tenacity>=6.2.0 in /home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages (from plotly) (8.3.0)
Requirement already satisfied: packaging in /home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages (from plotly) (24.0)
import torch

torch.cuda.is_available()
True
%load_ext autoreload
%autoreload 2

from IPython.display import display, Math, Latex


import os
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
#import AI4NP_detector_opt.sol2.detector2 as detector2
import modules.detector2 as detector2
import re
import pickle
#import dill

import torch

from ax.metrics.noisy_function import GenericNoisyFunctionMetric
from ax.service.utils.report_utils import exp_to_df  #https://ax.dev/api/service.html#ax.service.utils.report_utils.exp_to_df
from ax.runners.synthetic import SyntheticRunner

# Plotting imports and initialization
from ax.utils.notebook.plotting import render, init_notebook_plotting
from ax.plot.contour import plot_contour
from ax.plot.pareto_utils import compute_posterior_pareto_frontier
from ax.plot.pareto_frontier import plot_pareto_frontier
#init_notebook_plotting()

# Model registry for creating multi-objective optimization models.
from ax.modelbridge.registry import Models

# Analysis utilities, including a method to evaluate hypervolumes
from ax.modelbridge.modelbridge_utils import observed_hypervolume

from ax import SumConstraint
from ax import OrderConstraint
from ax import ParameterConstraint
from ax.core.search_space import SearchSpace
from ax.core.parameter import RangeParameter,ParameterType

from ax.core.objective import MultiObjective, Objective, ScalarizedObjective
from ax.core.optimization_config import ObjectiveThreshold, MultiObjectiveOptimizationConfig

from ax.core.experiment import Experiment

from botorch.utils.multi_objective.box_decompositions.dominated import DominatedPartitioning
from ax.core.data import Data

from ax.core.types import ComparisonOp

from sklearn.utils import shuffle
from functools import wraps
The autoreload extension is already loaded. To reload it, use:
  %reload_ext autoreload

12.2.1. Create detector geometry and simulate tracks#

The module detector creates a simple 2D geometry of a wire based tracker made by 4 planes.

The adjustable parameters are the radius of each wire, the pitch (along the y axis), and the shift along y and z of a plane with respect to the previous one.

A total of 8 parameters can be tuned.

The goal of this toy model, is to tune the detector design so to optimize the efficiency (fraction of tracks which are detected) as well as the cost for its realization. As a proxy for the cost, we use the material/volume (the surface in 2D) of the detector. For a track to be detetected, in the efficiency definition we require at least two wires hit by the track.

So we want to maximize the efficiency (defined in detector.py) and minimize the cost.

12.2.1.1. LIST OF PARAMETERS#

(baseline values)

  • R = .5 [cm]

  • pitch = 4.0 [cm]

  • y1 = 0.0, y2 = 0.0, y3 = 0.0, z1 = 2.0, z2 = 4.0, z3 = 6.0 [cm]

# CONSTANT PARAMETERS
#------ define mother region ------#
y_min=-10.1
y_max=10.1
N_tracks = 1000


print("::::: BASELINE PARAMETERS :::::")
R = .5
pitch = 4.0
y1 = 0.0
y2 = 0.0
y3 = 0.0
z1 = 2.0
z2 = 4.0
z3 = 6.0

print("R, pitch, y1, y2, y3, z1, z2, z3: ", R, pitch, y1, y2, y3, z1, z2, z3,"\n")


#------------- GEOMETRY ---------------#
print(":::: INITIAL GEOMETRY ::::")
tr = detector2.Tracker(R, pitch, y1, y2, y3, z1, z2, z3)
Z, Y = tr.create_geometry()
num_wires = detector2.calculate_wires(Y, y_min, y_max)

volume = detector2.wires_volume(Y, y_min, y_max,R)

detector2.geometry_display(Z, Y, R, y_min=y_min, y_max=y_max,block=False,pause=5) #5

print("# of wires: ", num_wires, ", volume: ", volume)

#------------- TRACK GENERATION -----------#
print(":::: TRACK GENERATION ::::")
t = detector2.Tracks(b_min=y_min, b_max=y_max, alpha_mean=0, alpha_std=0.3)
tracks = t.generate(N_tracks)

detector2.geometry_display(Z, Y, R, y_min=y_min, y_max=y_max,block=False, pause=-1)
detector2.tracks_display(tracks, Z,block=False,pause=-1)

 #a track is detected if at least two wires have been hit
score = detector2.get_score(Z, Y, tracks, R)
frac_detected = score[0]
resolution = score[1]
print("fraction of tracks detected: ",frac_detected)
print("resolution: ",resolution)
::::: BASELINE PARAMETERS :::::
R, pitch, y1, y2, y3, z1, z2, z3:  0.5 4.0 0.0 0.0 0.0 2.0 4.0 6.0 

:::: INITIAL GEOMETRY ::::
# of wires:  20 , volume:  62.800000000000004
:::: TRACK GENERATION ::::
../_images/a455d684aee372c0a703e2a79518f5faaf154d5f004003884269eb97906761a5.png ../_images/ff0f7e34aeeb5749854ac40a951f7c39db8d501276d33c7bfd7129f492d22890.png
fraction of tracks detected:  0.242
resolution:  0.2498114451369561

12.2.2. Define Objectives#

Defines a class for the objectives of the problem that can be used in the MOO.

class objectives():

  def __init__(self,tracks,y_min,y_max):
    self.tracks = tracks
    self.y_min = y_min
    self.y_max = y_max

  def wrapper_geometry(fun):

      def inner(self):
          R, pitch, y1, y2, y3, z1, z2, z3 = self.X
          self.geometry(R, pitch, y1, y2, y3, z1, z2, z3)
          return fun(self)
      return inner

  def update_tracks(self, new_tracks):
    self.tracks = new_tracks

  def update_design_point(self,X):
      self.X = X


  def geometry(self,R, pitch, y1, y2, y3, z1, z2, z3):
    tr = detector2.Tracker(R, pitch, y1, y2, y3, z1, z2, z3)
    self.R = R
    self.Z, self.Y = tr.create_geometry()


  @wrapper_geometry
  def calc_score(self):
      res = detector2.get_score(self.Z, self.Y, self.tracks, self.R)
      assert res[0] >= 0 and res[1] >= 0,"Fraction or Resolution negative."

      return res


  def get_score(self,X):
    R, pitch, y1, y2, y3, z1, z2, z3 = X
    self.geometry(R, pitch, y1, y2, y3, z1, z2, z3)
    res = detector2.get_score(self.Z, self.Y, self.tracks, self.R)
    return res


  def get_volume(self):
    volume = detector2.wires_volume(self.Y, self.y_min, self.y_max,self.R)
    return volume



res = objectives(tracks,y_min,y_max)

#res.geometry(R, pitch, y1, y2, y3, z1, z2, z3)

X = R, pitch, y1, y2, y3, z1, z2, z3
#fscore  = res.get_score(X)
res.update_design_point(X)
fscore  = res.calc_score()[0]
fvolume = res.get_volume()

print("...check: ", fvolume, fscore)
...check:  62.800000000000004 0.242

12.2.3. Multi-Objective Optimization#

We will be using ax-platform (https://ax.dev).

  • In this example we will be using Multi-Objective Bayesian Optimization (MOBO) using qNEHVI + SAASBO

  • Notice that every function is minimized. Our efficiency is defined as an tracking inefficiency = 1 - efficiency

  • We add the resolution as a third objective. The average residual of the track hit from the wire centre is used as a proxy for the resolution for this toy-model

#---------------------- BOTORCH FUNCTIONS ------------------------#

def build_experiment(search_space,optimization_config):
    experiment = Experiment(
        name="pareto_experiment",
        search_space=search_space,
        optimization_config=optimization_config,
        runner=SyntheticRunner(),
    )
    return experiment

def glob_fun(loc_fun):
    @wraps(loc_fun)
    def inner(xdic):
        x_sorted = [xdic[p_name] for p_name in xdic.keys()] #it assumes x will be given as, e.g., dictionary
        res = list(loc_fun(x_sorted))
        return res

    return inner

def initialize_experiment(experiment,N_INIT):
    sobol = Models.SOBOL(search_space=experiment.search_space)

    experiment.new_batch_trial(sobol.gen(N_INIT)).run()

    return experiment.fetch_data()

@glob_fun
def ftot(xdic):
    return (1- res.get_score(xdic)[0], res.get_volume(), res.get_score(xdic)[1])

def f1(xdic):
    return ftot(xdic)[0] #obj1

def f2(xdic):
    return ftot(xdic)[1] #obj2

#def f3(xdic):
    #return ftot(xdic)[2] #obj3

tkwargs = {
    "dtype": torch.double,
    "device": torch.device("cuda" if torch.cuda.is_available() else "cpu"),
    }


# Define Hyper-parameters for the optimization
N_BATCH = 5
Q_SIZE = 1
dim_space = 8 # len(X)
N_INIT = 2 * (dim_space + 1) #
lowerv = np.array([0.5,2.5,0.,0.,0.,2.,2.,2.])
upperv = np.array([1.0,5.0,4.,4.,4.,10.,10.,10.])
from ax import (
    Data,
    Experiment,
    Metric,
    Objective,
    OptimizationConfig,
    ParameterType,
    RangeParameter,
    Runner,
    SearchSpace,
)

# defining the search space one can also include constraints in this function
search_space = SearchSpace(
    parameters=
    [RangeParameter(name=f"x{i}", lower=lowerv[i], upper=upperv[i],
                    parameter_type=ParameterType.FLOAT) for i in range(dim_space)]
    )
print (search_space)

# define the metrics for optimization
metric_a = GenericNoisyFunctionMetric("a", f=f1, noise_sd=0.0, lower_is_better=True)
metric_b = GenericNoisyFunctionMetric("b", f=f2, noise_sd=0.0, lower_is_better=True)
#metric_c = GenericNoisyFunctionMetric("c", f=f3, noise_sd=0.0, lower_is_better=True)

mo = MultiObjective(objectives=[Objective(metric=metric_a)
                                ,Objective(metric=metric_b)
                                #,Objective(metric=metric_c)
                                ]
                    )

ref_point = [-1.1]*len(mo.metrics)
refpoints = torch.Tensor(ref_point).to(**tkwargs) # [1.1, 1.1, 1.1] for 3 objs

objective_thresholds = [ObjectiveThreshold(metric=metric, bound=val, relative=False, op=ComparisonOp.LEQ)
                        for metric, val in zip(mo.metrics, refpoints) #---> this requires defining a torch.float64 object --- by default is (-)1.1 for DTLZ
                        ]


optimization_config = MultiObjectiveOptimizationConfig(
    objective=mo,
    objective_thresholds=objective_thresholds
    )
SearchSpace(parameters=[RangeParameter(name='x0', parameter_type=FLOAT, range=[0.5, 1.0]), RangeParameter(name='x1', parameter_type=FLOAT, range=[2.5, 5.0]), RangeParameter(name='x2', parameter_type=FLOAT, range=[0.0, 4.0]), RangeParameter(name='x3', parameter_type=FLOAT, range=[0.0, 4.0]), RangeParameter(name='x4', parameter_type=FLOAT, range=[0.0, 4.0]), RangeParameter(name='x5', parameter_type=FLOAT, range=[2.0, 10.0]), RangeParameter(name='x6', parameter_type=FLOAT, range=[2.0, 10.0]), RangeParameter(name='x7', parameter_type=FLOAT, range=[2.0, 10.0])], parameter_constraints=[])
# Build the experiment which should setup the ax optimization
experiment = build_experiment(search_space,optimization_config)

# Initialize the experiment with N_INIT points and run them
data = initialize_experiment(experiment,N_INIT)
# look into data
data.df
arm_name metric_name mean sem trial_index n frac_nonnull
0 0_0 a 0.349000 0.0 0 555 0.349000
1 0_1 a 0.492000 0.0 0 555 0.492000
2 0_2 a 0.446000 0.0 0 555 0.446000
3 0_3 a 0.605000 0.0 0 555 0.605000
4 0_4 a 0.404000 0.0 0 555 0.404000
5 0_5 a 0.526000 0.0 0 555 0.526000
6 0_6 a 0.139000 0.0 0 555 0.139000
7 0_7 a 0.789000 0.0 0 555 0.789000
8 0_8 a 0.672000 0.0 0 555 0.672000
9 0_9 a 0.303000 0.0 0 555 0.303000
10 0_10 a 0.254000 0.0 0 555 0.254000
11 0_11 a 0.684000 0.0 0 555 0.684000
12 0_12 a 0.432000 0.0 0 555 0.432000
13 0_13 a 0.514000 0.0 0 555 0.514000
14 0_14 a 0.223000 0.0 0 555 0.223000
15 0_15 a 0.697000 0.0 0 555 0.697000
16 0_16 a 0.610000 0.0 0 555 0.610000
17 0_17 a 0.427000 0.0 0 555 0.427000
18 0_0 b 133.728158 0.0 0 555 133.728158
19 0_1 b 191.178190 0.0 0 555 191.178190
20 0_2 b 185.109932 0.0 0 555 185.109932
21 0_3 b 105.636834 0.0 0 555 105.636834
22 0_4 b 173.866668 0.0 0 555 173.866668
23 0_5 b 162.719900 0.0 0 555 162.719900
24 0_6 b 317.085775 0.0 0 555 317.085775
25 0_7 b 56.237301 0.0 0 555 56.237301
26 0_8 b 79.913603 0.0 0 555 79.913603
27 0_9 b 256.834582 0.0 0 555 256.834582
28 0_10 b 215.298810 0.0 0 555 215.298810
29 0_11 b 103.184866 0.0 0 555 103.184866
30 0_12 b 148.736310 0.0 0 555 148.736310
31 0_13 b 163.935757 0.0 0 555 163.935757
32 0_14 b 261.039124 0.0 0 555 261.039124
33 0_15 b 80.389178 0.0 0 555 80.389178
34 0_16 b 100.683291 0.0 0 555 100.683291
35 0_17 b 193.201848 0.0 0 555 193.201848
#Let us train the model with the data we have generated. This will take a while, so please be patient.

model = Models.FULLYBAYESIANMOO(
    experiment=experiment,
    data=data, # tell the data
    # use fewer num_samples and warmup_steps to speed up this tutorial
    num_samples=32,#256
    warmup_steps=64,#512
    torch_device=tkwargs["device"],
    verbose=False,  # Set to True to print stats from MCMC
    disable_progbar=False,  # Set to False to print a progress bar from MCMC
    )
  
Sample: 100%|██████████| 96/96 [00:29,  3.21it/s, step size=3.13e-01, acc. prob=0.946]
Sample: 100%|██████████| 96/96 [00:25,  3.77it/s, step size=5.00e-01, acc. prob=0.879]
# let us try to see some predictions of this model
# randomly generate a point in the search space

from ax.modelbridge.factory import get_uniform
from ax.core.observation import ObservationFeatures

gr = get_uniform(search_space).gen(n=1)

gr.param_df.to_dict(orient="records")[0]

obs_feats = [ObservationFeatures(parameters=p) for p in gr.param_df.to_dict(orient="records")]

model.predict(obs_feats)
({'b': [126.75337100033741], 'a': [0.5643156530147082]},
 {'b': {'b': [364.6019157496937], 'a': [0.0]},
  'a': {'b': [0.0], 'a': [0.0013679526407682544]}})

12.2.4. Question#

Can you do predictions using the MC methods and see if you can have plot the corresponding objectives with errors?

hv_list = []

for i in range(N_BATCH):
    print("\n\n...PROCESSING BATCH n.: {}\n\n".format(i+1))

    model = Models.FULLYBAYESIANMOO(
        experiment=experiment,
        data=data, # tell the data
        # use fewer num_samples and warmup_steps to speed up this tutorial
        num_samples=32,#256
        warmup_steps=64,#512
        torch_device=tkwargs["device"],
        verbose=False,  # Set to True to print stats from MCMC
        disable_progbar=False,  # Set to False to print a progress bar from MCMC
        )

    generator_run = model.gen(BATCH_SIZE)   #ask BATCH_SIZE points
    trial = experiment.new_batch_trial(generator_run=generator_run)
    trial.run()
    data = Data.from_multiple_data([data, trial.fetch_data()])   #https://ax.dev/api/core.html#ax.Data.from_multiple_data

    print("\n\n\n...calculate df via exp_to_df (i.e., global dataframe so far):\n\n")


    metric_names = {index: i for index, i in enumerate(mo.metric_names)}
    N_METRICS = len(metric_names)
    df = exp_to_df(experiment).sort_values(by=["trial_index"])
    outcomes = torch.tensor(df[mo.metric_names].values)
    #outcomes, _ = data_to_outcomes(data, N_INIT, i+1, BATCH_SIZE, N_METRICS, metric_names)
    partitioning = DominatedPartitioning(ref_point=refpoints, Y=outcomes.to(**tkwargs))
    try:
        hv = partitioning.compute_hypervolume().item()
    except:
        hv = 0
        print("Failed to compute hv")
    hv_list.append(hv)
    print(f"Iteration: {i+1}, HV: {hv}")
...PROCESSING BATCH n.: 1
Sample: 100%|██████████| 96/96 [00:22,  4.24it/s, step size=6.02e-01, acc. prob=0.813]
Sample: 100%|██████████| 96/96 [00:27,  3.52it/s, step size=3.24e-01, acc. prob=0.932]
Sample: 100%|██████████| 96/96 [00:24,  3.87it/s, step size=4.99e-01, acc. prob=0.887]
[WARNING 05-31 11:53:19] ax.service.utils.report_utils: Column reason missing for all trials. Not appending column.
...calculate df via exp_to_df (i.e., global dataframe so far):


Iteration: 1, HV: 804.0200360632218


...PROCESSING BATCH n.: 2
Sample: 100%|██████████| 96/96 [00:20,  4.76it/s, step size=7.79e-01, acc. prob=0.756]
Sample: 100%|██████████| 96/96 [00:26,  3.63it/s, step size=3.59e-01, acc. prob=0.900]
Sample: 100%|██████████| 96/96 [00:20,  4.74it/s, step size=6.42e-01, acc. prob=0.740]
/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning:

A not p.d., added jitter of 1.0e-08 to the diagonal

/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning:

A not p.d., added jitter of 1.0e-08 to the diagonal

[WARNING 05-31 11:54:45] ax.service.utils.report_utils: Column reason missing for all trials. Not appending column.
...calculate df via exp_to_df (i.e., global dataframe so far):


Iteration: 2, HV: 804.023028474837


...PROCESSING BATCH n.: 3
Sample: 100%|██████████| 96/96 [00:24,  3.98it/s, step size=6.14e-01, acc. prob=0.848]
Sample: 100%|██████████| 96/96 [00:30,  3.12it/s, step size=4.38e-01, acc. prob=0.935]
Sample: 100%|██████████| 96/96 [00:25,  3.78it/s, step size=6.12e-01, acc. prob=0.652]
/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning:

A not p.d., added jitter of 1.0e-08 to the diagonal

/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/botorch/optim/optimize.py:251: RuntimeWarning:

Optimization failed in `gen_candidates_scipy` with the following warning(s):
[NumericalWarning('A not p.d., added jitter of 1.0e-08 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-07 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-06 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-05 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-04 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-03 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-08 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-07 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-06 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-05 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-04 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-03 to the diagonal'), BotorchWarning('Low-rank cholesky updates failed due NaNs or due to an ill-conditioned covariance matrix. Falling back to standard sampling.'), OptimizationWarning('Optimization failed within `scipy.optimize.minimize` with status 2 and message ABNORMAL_TERMINATION_IN_LNSRCH.'), NumericalWarning('A not p.d., added jitter of 1.0e-08 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-07 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-06 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-05 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-04 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-03 to the diagonal'), BotorchWarning('Low-rank cholesky updates failed due NaNs or due to an ill-conditioned covariance matrix. Falling back to standard sampling.'), NumericalWarning('A not p.d., added jitter of 1.0e-08 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-07 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-06 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-05 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-04 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-03 to the diagonal'), BotorchWarning('Low-rank cholesky updates failed due NaNs or due to an ill-conditioned covariance matrix. Falling back to standard sampling.'), OptimizationWarning('Optimization failed within `scipy.optimize.minimize` with status 2 and message ABNORMAL_TERMINATION_IN_LNSRCH.'), NumericalWarning('A not p.d., added jitter of 1.0e-08 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-07 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-06 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-05 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-04 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-03 to the diagonal'), BotorchWarning('Low-rank cholesky updates failed due NaNs or due to an ill-conditioned covariance matrix. Falling back to standard sampling.'), NumericalWarning('A not p.d., added jitter of 1.0e-08 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-07 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-06 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-05 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-04 to the diagonal'), NumericalWarning('A not p.d., added jitter of 1.0e-03 to the diagonal')]
Trying again with a new set of initial conditions.

/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/botorch/optim/optimize.py:251: RuntimeWarning:

Optimization failed on the second try, after generating a new set of initial conditions.

/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning:

A not p.d., added jitter of 1.0e-08 to the diagonal

/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning:

A not p.d., added jitter of 1.0e-07 to the diagonal

/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning:

A not p.d., added jitter of 1.0e-06 to the diagonal

/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning:

A not p.d., added jitter of 1.0e-05 to the diagonal

/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning:

A not p.d., added jitter of 1.0e-04 to the diagonal

/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning:

A not p.d., added jitter of 1.0e-03 to the diagonal

/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/botorch/acquisition/cached_cholesky.py:150: BotorchWarning:

Low-rank cholesky updates failed due NaNs or due to an ill-conditioned covariance matrix. Falling back to standard sampling.

[WARNING 05-31 11:57:15] ax.service.utils.report_utils: Column reason missing for all trials. Not appending column.
...calculate df via exp_to_df (i.e., global dataframe so far):


Iteration: 3, HV: 804.023028474837


...PROCESSING BATCH n.: 4
Sample: 100%|██████████| 96/96 [00:26,  3.58it/s, step size=3.34e-01, acc. prob=0.922]
Sample: 100%|██████████| 96/96 [00:31,  3.01it/s, step size=7.06e-01, acc. prob=0.808]
Sample: 100%|██████████| 96/96 [00:28,  3.36it/s, step size=7.25e-01, acc. prob=0.784]
/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning:

A not p.d., added jitter of 1.0e-08 to the diagonal

/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning:

A not p.d., added jitter of 1.0e-08 to the diagonal

/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning:

A not p.d., added jitter of 1.0e-08 to the diagonal

/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning:

A not p.d., added jitter of 1.0e-08 to the diagonal

/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning:

A not p.d., added jitter of 1.0e-08 to the diagonal

[WARNING 05-31 11:59:26] ax.modelbridge.base: TorchModelBridge(model=FullyBayesianMOOBotorchModel) was not able to generate 5 unique candidates. Generated arms have the following weights, as there are repeats:
[3.0, 1.0, 1.0]
[WARNING 05-31 11:59:26] ax.service.utils.report_utils: Column reason missing for all trials. Not appending column.
...calculate df via exp_to_df (i.e., global dataframe so far):


Iteration: 4, HV: 804.5932903331675


...PROCESSING BATCH n.: 5
Sample: 100%|██████████| 96/96 [00:28,  3.40it/s, step size=5.58e-01, acc. prob=0.864]
Sample: 100%|██████████| 96/96 [00:30,  3.11it/s, step size=5.71e-01, acc. prob=0.892]
Sample: 100%|██████████| 96/96 [00:49,  1.94it/s, step size=1.15e-01, acc. prob=0.970]
/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/linear_operator/utils/cholesky.py:40: NumericalWarning:

A not p.d., added jitter of 1.0e-08 to the diagonal

[WARNING 05-31 12:01:59] ax.service.utils.report_utils: Column reason missing for all trials. Not appending column.
...calculate df via exp_to_df (i.e., global dataframe so far):


Iteration: 5, HV: 805.555527745325

12.2.5. Analysis of Results#

12.2.5.1. Inspecting the Hyper volume statistics#

import plotly.express as px

fig = px.scatter(x = np.arange(N_BATCH) + 1, y = hv_list,
           labels={"x": "N_BATCHES",
                    "y": "Hyper Volume"},
           width = 800, height = 800,
           title = "HyperVolume Improvement", )
fig.update_traces(marker=dict(size=8,
                              line=dict(width=2,
                                        color='DarkSlateGrey')),
                  selector=dict(mode='marker+line'))
fig.data[0].update(mode = "markers+lines")
fig.show()
import matplotlib.pyplot as plt

plt.figure(figsize = (10, 7))
plt.plot(np.arange(N_BATCH) + 1 , hv_list, "ro-")
plt.xlabel("N_BATCHES", fontsize = 12)
plt.ylabel("Hyper Volume", fontsize = 12)
plt.show()
../_images/db97d9ee5abe796ba1ea8bdb83a05862994f2dad773f989cf08fb2a902daa4bb.png

12.2.6. Overall Performance in the Objective space.#

fig1 = px.scatter_3d(df, x="a", y="b", z = "c", color = "trial_index",
                     labels = { "a": "InEfficiency",
                               "b": "Volume",
                               "c": "Resolution"
                     }, hover_data = df.columns,
                     height = 800, width = 800)
fig1.show()

12.2.7. Exploration as a function of Iteration number#

obj_fig = px.scatter_3d(df, x="a", y="b", z = "c", animation_frame="trial_index", color="trial_index",
                        range_x=[0., 0.6], range_y=[0. , 400.], range_z=[0., 0.6],
                     labels = { "a": "InEfficiency",
                               "b": "Volume",
                               "c": "Resolution"}, hover_data = df.columns,
                        width = 800, height = 800)
obj_fig.update(layout_coloraxis_showscale=False)
obj_fig.show()

12.2.8. Computing posterior pareto frontiers.#

Once can sample expected approximate pareto front solution from the built surrogate model.

from ax.core import metric


# https://ax.dev/api/plot.html#ax.plot.pareto_utils.compute_posterior_pareto_frontier

# absolute_metrics – List of outcome metrics that should NOT be relativized w.r.t. the status quo
# (all other outcomes will be in % relative to status_quo).

# Note that approximated pareto frontier is can be visualized only against 2 objectives.
# So one can try to make mixed plots, to see the ``

n_points_surrogate = 25
frontier = [] #(a,b), (a,c), (b,c)
metric_combos = [(metric_a, metric_b), (metric_a, metric_c), (metric_b, metric_c)]

for combo in metric_combos:
    print ("computing pareto frontier : ", combo)
    frontier.append(compute_posterior_pareto_frontier(
        experiment=experiment,
        data=experiment.fetch_data(),
        primary_objective=combo[0], #_b
        secondary_objective=combo[1], #_a
        absolute_metrics=["a", "b", "c"],
        num_points=n_points_surrogate,
    ))

#render(plot_pareto_frontier(frontier, CI_level=0.9))
#res_front = plot_pareto_frontier(frontier, CI_level=0.8)
computing pareto frontier :  (GenericNoisyFunctionMetric('a'), GenericNoisyFunctionMetric('b'))
/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/botorch/optim/fit.py:102: OptimizationWarning:

`scipy_minimize` terminated with status OptimizationStatus.FAILURE, displaying original message from `scipy.optimize.minimize`: ABNORMAL_TERMINATION_IN_LNSRCH
computing pareto frontier :  (GenericNoisyFunctionMetric('a'), GenericNoisyFunctionMetric('c'))
/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/botorch/optim/fit.py:102: OptimizationWarning:

`scipy_minimize` terminated with status OptimizationStatus.FAILURE, displaying original message from `scipy.optimize.minimize`: ABNORMAL_TERMINATION_IN_LNSRCH
computing pareto frontier :  (GenericNoisyFunctionMetric('b'), GenericNoisyFunctionMetric('c'))
/home/ksuresh/miniconda3/envs/env_AID2E/lib/python3.12/site-packages/botorch/optim/fit.py:102: OptimizationWarning:

`scipy_minimize` terminated with status OptimizationStatus.FAILURE, displaying original message from `scipy.optimize.minimize`: ABNORMAL_TERMINATION_IN_LNSRCH
print ("Metric_a, Metric_b")
render(plot_pareto_frontier(frontier[0], CI_level=0.8))
Metric_a, Metric_b

12.2.9. Validating the computed pareto front performance#

Since the model is trained on objectives, One can perform k-fold validation to see the performance of the surrgoate model’s prediction

from ax.modelbridge.cross_validation import cross_validate
from ax.plot.diagnostic import tile_cross_validation

#https://ax.dev/api/_modules/ax/modelbridge/cross_validation.html

cv = cross_validate(model, folds = 5)
render(tile_cross_validation(cv))

12.2.10. Exercise 3#

  • Determine the Pareto set from the 3D front and choose an optimal point

  • Plot the optimal configuration of the tracker corresponding to that point

  • Do analysis of convergence

  • Visualize the point with a radar or petal diagram, following https://pymoo.org/visualization/index.html